

++++ Key considerations for successfully maintaining a rodent colony to support oncology drug development

June 13, 2016 - Helmut Ehall, Director of Veterinary Services EU

© 2016 Envigo

envigo.com

Company overview

Who We Are

We are a global contract research products and services company dedicated to helping our customers achieve the potential of their products which improve human life, advance animal welfare, and protect the environment and global food security.

Our Brand Promise

+

Our company places the customer at the center of everything we do. We focus on what matters to you, our customer, and work closely with you to secure the potential of your research and products. We are dedicated to research that makes a difference in the lives of people all over the world.

Together, we make the world a safer and healthier place to live.

----------------------Capacity and Reach

52 locations

Global availability of research models and CRO services

5 continents

Extensive reach across the Americas, Europe, Asia, and the Middle East

3,800 employees

Serving over 65 countries

150 years

Combined industry experience

\$500 million

Approximately \$500m in annual revenues

Research Models and Services (RMS) locations

Contract Research Services (CRS) locations

United States of America

+ Princeton, New Jersey

Europe Corporate HQ: Huntingdon, England

- + Huntingdon, England
- + Eye, England
- + Ely, England
- + Shardlow, England
- + Rossdorf, Germany
- + Barcelona, Spain
- + Valencia, Spain

Middle East

+ Rehovot, Israel

Envigo laboratories are located in The United States of America, Europe and the Middle East

What are animal models of cancer?

Why use animals to model cancer?

- + Cancer is an extremely complex range of diseases
- Research to understand its origin, progression, and treatment is continually evolving as better models become available
- Researchers use animals to study cancer for many reasons
- + Rodents have...
 - + ...shorter lifespans, more rapid tumour generation and disease progression times than humans
- + Rodent studies enable...
 - + ...laboratory control of multiple variables; the environment, diet, exposure to infectious agents, etc.
 - + ...actual investigation of living test systems, rather than just in vitro and in silico modelling that aid in better predicting and developing clinical solutions

What types of animal models are used for oncology?

- Many different approaches are taken to studying cancer in animal models, using a variety of different species and approaches
- Models in which cancer occurs spontaneously without any modification to the test system
- Animals which are genetically modified to that they more readily develop spontaneous tumours
- Animals that are exposed to environmental factors (chemicals or radiation) in order to induce spontaneous tumour formation
- + Models where tumours or cell lines are engrafted

In vivo pharmacology

+ Human tumour xenografts (rates and mice)

+ Immunocompromised rodent models are engrafted with cell lines derived from human tumours that have been cultured *in vitro* prior to implantation.

Patient derived xenografts (PDX)

+ Immunocompromised rodent models are engrafted with primary or secondary tumours that have been cultured *in vivo* not in tissue culture

+ Syngeneic models

+ Immunocompetent rodents are engrafted with murine tumour cell lines so that therapeutics can be evaluated in the presence of a functional immune system

+ Orthotopic models

- + A variety of cell lines can be engrafted in particular tissues of interest in the test system, mimicking human disease
- + Environmental/radiation exposure models
 - + Many approaches may be taken to induce tumours in the test system

Non-clinical safety assessment

- Many different animal species are used to assess the safety of therapeutics intended for the treatment of cancer
- Rodents, dogs, non-human primates, pigs, mini-pigs, rabbits, guinea pigs and many other custom bred species are used
- The quality of the animals, the way they are bred, housed, trained, dosed, fed and maintained are all critical considerations in generating the data required to bring a drug to market
- Envigo is as passionate about working with our customers to build a healthier and safer world, whilst caring about each other, our animals and the environment

++++ Do housing and husbandry matter?

Mandy Horn, MS Supervisor, Veterinary Sciences, Research & Support, North America Stephen Hillen, DVM Director, Veterinary Science Europe

© 2016 Envigo

envigo.com

Outline

- + Why do housing and husbandry matter?
- + What parameters should be considered?
- Management considerations
- + Case-study review

The design of animal facilities combined with appropriate animal housing and management are **essential contributors** to animal well-being, the quality of animal research and production, teaching or testing programs involving animals, and the health and safety of personnel.

Microenvironmental conditions can directly affect physiologic processes and behavior and may alter disease susceptibility

Guide, 2011

What parameters should be considered?

- + Bedding
- + Diet
- + Enrichment
- + Handling
- + Noise
- + Vibration
- + Olfactory stimuli
- + Lighting
- + Temperature

- + Humidity
- + Air flow
- + Caging
- + Cage density
- + Experimental variables
- + Inability/ability to socialize
- + Pain/distress
- + Restraint
- + Transportation

Scenario review

Stress? What stress?

+ Background

+ 12-wk study of Zucker rats to monitor blood glucose, body weight, and HbA1c

+ Problem

+ Non-fasted glucose values were significantly greater during wk 7 compared to other weeks, atypical of model phenotype

+ Investigation

+ Reviewed various parameters, including timing of glucose monitoring, light changes, personnel changes, confirmation of bedding/diet, cage cleaning schedule

Stress? What stress?

+ Conclusion

+ Confirmed with site management that cages were cleaned prior to blood glucose measurement as animal technicians wanted to ensure best possible environment and cleanliness for experiment

+ Resolution

+ Research technician discussed importance of not performing cage cleaning prior to measurement of blood glucose as this event can cause stress and impact results

I'm picking up bad vibrations...

+ Background

+ Customer received timed-mated Sprague Dawley rats at early gestation for a number of years from the same facility

+ Problem

+ Recent findings of non-pregnant rats with resorptions, increased cannibalization, death in dams and/or pups

+ Investigation

 Customer investigating their institution with veterinarian; discussing bedding, diet, cage type, animal technicians, overall vivarium, outside vendors, as well as external environmental changes, including new construction project nearby

I'm picking up *bad* vibrations...

+ Conclusion

+ New construction project next to vivarium involved large amounts of noise and vibration; reported reproductive issues not only with timed-mated animals, but also internal colonies, leading to losses at the institution

+ Resolution

+ Construction could not be stopped; however, increased awareness to discuss further with outside company

Am I missing something?

+ Background

+ Immunodeficient animal model previously exhibited young pup death; a root cause was initiated and the addition of enrichment reduced pup death

+ Problem

+ In this immunodeficient mouse model, the facility began to report an increased incidence of young pup death

+ Investigation

+ Multiple factors investigated, including humidity, lighting, isolator location, diet, bedding, enrichment, animal technicians, and genetic results

Am I missing something?

+ Conclusion

+ Investigation revealed new technician overseeing colony failed to utilize crinkle-paper enrichment in breeding cages over a two week period, resulting in an increase in pup death

+ Resolution

+ Enrichment was added to breeding cages again, and training occurred in proper management of this model

Research summary: Garner and Gaskill

- Review of 7 years' of studies by Garner and Gaskill, published on March 30th, 2012
 - + In general research, mice are kept too cold (without nesting material)
 - + Effects on well being & study outcome (due to elevated metabolic rate)
 - + With nesting material they can naturally regulate their temperature
 - + At 20/24 degrees: less aggressiveness, more milk production, unhappy pups
 - + At 18/20 degrees: immune function change and start of growth retardation
 - + Nest is not only for warmth, also physical comfort, form of protection, decreasing anxiety and stress level
 - + Nest provokes less food intake
 - + Females prefer warmer temperature than males: plus 5 degrees

Summary

- + Communication is key!
- Be knowledgeable about practices and procedures in your institution, and potential impacts on animal well-being or study outcome
- Animal technicians, veterinary staff, vivarium manager, and investigators should work closely, especially when any changes occur

References

- 1. Institute for Laboratory Animal Research. 2011. Guide for the care and use of laboratory animals. Washington (DC): National Academies Press.
- 2. Balcombe, J. P., Barnard, N. D. & Sandusky, C. (2004). Laboratory routines cause animal stress. *Contemporary Topics, 43 (6), 42-51.*
- 3. Baldwin, A. L., Schwartz, G. E. & Hopp, D. H. (2007). Are investigators aware of environmental noise in animal facilities and that this noise my affect experimental data? *Journal of the American Association for Laboratory Animal Science, 46 (1),* 45-51.
- 4. Baumans, V. (1999). Normative Biology, Immunology, and Husbandry. In Foster, H. L., Small, J. K. & Fox, J. G. (eds.) *The Mouse in Biomedical Research*, Vol. III 7th ed. (pp. 15-35). New York: Academic Press.
- 5. Castelhano-Carlos, M. J. & Baumans, V. (2009). The impact of light, noise, cage cleaning and in-house transport on welfare and stress of laboratory rats. *Laboratory Animals*, *43*, 311-327.
- 6. Crabbe, J. C., Deutsch, C. M., Tam, B. R. & Young, E. R. (1988). Environmental variables differentially affect ethanol-stimulated activity in selectively bred mouse lines. *Psychopharmacology*, *95*, 103-108.
- 7. Festing, M. F. W. & Peters, A. G. (1999). Terrestrial Vertebrates. In Poole, T. (ed.) *The UFAW Handbook on the Care and Management of Laboratory Animals*, Vol. I *7th* ed. (pp. 28-44). Oxford: Blackwell Science.
- 8. Heffner, H. E. & Heffner, R. S. (2007). Hearing ranges of laboratory animals. *Journal of the American Association for Laboratory Animal Science, 46 (1),* 20-27.
- 9. Hetherington, C. M., Doe, B. & Hay, D. (2000). In Jackson, I. J. & Abbott, C. M. (eds.) Mouse *Genetics and Transgenics: A Practical Approach*. Oxford: Oxford University Press.
- 10. Jain, M. & Baldwin, A. L. (2003). Are laboratory animal stressed by their housing environment and are investigators aware that this stress can affect physiological data? *Medical Hypotheses, 60 (2),* 284-289.
- 11. Katsnelson, A. (). Lab Toys: how does cage enrichment affect rodents? *The Scientist, 23, 30.*
- 12. Lauer, A. M., May, B. J., Hao, Z. J. & Watson, J. (2009). Sound levels in modern rodent housing rooms are an uncontrolled environmental variable with fluctuations mainly due to human activities. *Lab Anim, 38 (5),* 154-160.
- 13. Murray, K. A. & Parker, N. (2005). Breeding genetically modified rodents: tips for tracking and troubleshooting reproductive performance. Lab Animal, 34 (4), 36-41.
- 14. Otis, A. P. & Foster, H. L. (1983). Normative Biology, Immunology, and Husbandry. In Foster, H. L., Small, J. K. & Fox, J. G. (eds.) *The Mouse in Biomedical Research*, Vol. III 7th ed. (pp. 15-35). New York: Academic Press.
- 15. Rabat, A. (2007). Extra-auditory effects of noise in laboratory animals: the relationship between noise and sleep. *Journal of the American Association for Laboratory Animal Science, 46 (1),* 35-41.
- 16. Reinhardt, V. (2004). Common husbandry-related variables in biomedical research with animals. *Laboratory Animals, 38,* 213-235.
- 17. Sherwin, C. M. (2002). Comfortable quarters for mice in research institutions. In V. & A. Reinhardt (eds.), *Comfortable Quarters for Mice* 9th ed. (pp. 6-17). Washington DC: Animal Welfare Institute.
- 18. Turner, J. G., Bauer, C. A. & Rybak, L. P. (2007). Noise in animal facilities: why it matters. *Journal of the American Association for Laboratory Animal Science, 46 (1),* 10-13.
- 19. Yildiz, A., Hayirli, A., Okumus, Z., Kaynar, O. & Kisa, F. (2007). Physiological profile of juvenile rats: effects of cage size and cage density. *Lab Animal, 36 (2),* 28-38.

++++ Genetic background as a research variable

Sheryl Wildt, MS, MBA, CMAR Global Manager of Genetic Quality and Breeding Stephen Hillen, DVM Director, Veterinary Science, Europe

© 2016 Envigo

What genetic background does your model have?

Congenics, trangenics and knockouts... Oh my!

- + Congenic
- + Transgenic
- + Targeted mutants
- + Spontaneous mutants

Nomenclature

- + Follow proper rules for nomenclature
- Don't be tempted to abbreviate
- + The correct nomenclature can tell you a lot about a model:
 - + C57BL/6NHsd
 - + RccHan®:WIST
 - + B6.V-Lepob/OlaHsd
 - + FVB/N-Tg(MMTVneu)202Mul/J
 - + C57BL/6NTac-IL15tm1Imx N5
- + Guidelines:

http://www.informatics.jax.org/mgihome/nomen/gene.shtml

Now that you know what you have...

Genetic change is a research variable

- + Genetic contamination
- + Genetic drift

Genetic contamination

- + Accidental mismating between unrelated models
- + Can be identified through coat color changes
- + Can be easily missed
 - + Same coat color in same room
 - + Poor cage labeling / record keeping
 - + No routine genetic monitoring program
 - + Difficult to assess in outbred stocks
- + Inaccurate research data
- + Lose years research time, data and money

Genetic contamination - prevention

- + Know what you are starting with
- + Separate coat colors
- + Be sensitive to phenotypic changes
- + Good record keeping
- + Genetic testing program

Genetic drift

Spontaneous mutations

- + Spontaneous mutations that occur randomly throughout the genome
- + Typically occurs in non-coding DNA
- + Can result in phenotypic changes

+ Selection pressure

- + Can change allelic frequencies in outbred stocks
- + Can lead to the elimination of desired trait
- + Can lead to the introduction of non desirable trait

+ Bottlenecks

+ Breeding closely related animals in an outbred colony which results in the loss of alleles and/or large changes in allelic frequencies

Minimizing genetic change

- Maintain the appropriate number of animals for the colony type
- + Avoid selection pressure
- + Follow a specific breeding protocol
- + Excellent record keeping
- + Monitor your colonies

Summary

- + Know the genetic background of your model
- + Minimize genetic change in your colony
 - + Genetic contamination
 - + Genetic drift
- + Remember that genetic background can be a large research variable

Do housing and husbandry matter Genetic background as a research variable

++++ Feeding rodent models used in oncology studies

Graham Tobin, BSc, PhD, Teklad Diets Europe

© 2016 Envigo

envigo.com

Introduction

- + Do immunocompromised mice have different nutrient requirements compared to immunocompetent animals?
 - + Many immunocompromised mice are nude, with consequential effects on heat production for temperature regulation
 - + Nutrient requirements for tumour growth
- + What effect might different dietary ingredients have on tumour growth?
 - + Bioactive substances in ingredients
 - + Contaminants

Effect of dietary protein level on spontaneous mammary tumours in female C3H mice

Group	No. mice	Mice with m tumours	ammary	Age of mice at appearance o tumours (weeks)			
		Number	Percent	Range	Mean		
9% Casein	50	48	96	29-92	51.5 ± 2.2		
18% Casein	50	47	94	28-86	47.0 ± 2.3		
27% Casein	50	49	98	26-94	49.5 ± 2.4		
36% Casein	50	46	92	23-103	50.6 ± 2.9		
45% Casein	50	42	84	2-98	48.6 ± 2.6		

After Tannebaum and Silverstone, 1949

Effect of environmental temperature on the food intake of 3-4m old NMRI nude mice

Warburg effect on energy provision in tumours

Types of fat Saturated +Unsaturated +Monounsaturated +Polyunsaturated (PUFA) + 18:4 n-3 ω **Omega-3 (φ3)** 6 9 HO 15 12 18 α 9 18:2 n-6 ω **Omega-6 (φ6)** 6 HO 12 9 15 18 Adapted from GB HealthWatch ++++ ENVIGO 45

Sources of omega-3 and omega-6 fatty acids

	Omega-3 %	Omega-6 %	Ratio
Oil, corn	0.71	59.16	0.01
Margarine-butter blend	0.91	19.08	0.05
Oil, sunflower	0.20	3.67	0.05
Oil, olive	0.61	8.07	0.08
Shortening	1.05	13.93	0.08
Oil, wheat germ	7.04	55.90	0.13
Oil, soybean	6.94	52.02	0.13
Butter oil, anhydrous	1.49	2.31	0.64
Fish oil, sardine	26.99	3.75	7.19
Fish oil, menhaden	30.72	3.31	9.29
Fish oil, herring	14.09	1.43	9.88
Fish oil, cod liver	20.57	1.86	11.07
Fish oil, salmon	37.92	2.21	17.16
Values are % of the oil or fa	at		

Mean growth rate of MDA-MB 231 xenografts in 3-month old female athymic nude mice

Effect of omega-3 fatty acids on pancreatic precancerous lesions in elastase-Kras mice

Omega-3 diet - Menhaden fish oil included at 23% w/w No difference in body weight

After Strouch et al., 2011

Effect of nutrients on tumour growth

- + ↓ Carbohydrate: Slows tumour growth and prevents cancer initiation
 - + Warburg effect ? Cancer cells rely on glycolysis rather than oxidative phosphorylation [cancer cells hypoxic]
- Protein: no significant effect over a wide range, but very high inclusion may suppress tumour growth
- + ↑ Fat: Tumour promoting, but inhibition with omega-3 fatty acids (especially fish oils)

Optimum diet for tumour growth should have low/ moderate protein, high carbohydrate, and moderate (vegetable) fat

Ingredients are not just nutrient sources

+ Many ingredients contain bioactive compounds

- + Soybeans (Glycine max)
 - + Isoflavones (phytoestrogens)
 - + Saponins
 - + Lunasin (a soy peptide)
 - + Glyceollins (soy phytoalexins)
 - + Protease inhibitors
 - + Conglycinin (7S Globulin)
- + Some ingredients may contain contaminants
 - + Fish meal
 - + Organic mercury
 - + Nitrosamines
 - + PCBs, Dioxins, Brominated flame retardents, PAHs
 - + But note geographical area
 - + Maize
 - + Zearalenone

Inhibition of mammary tumours induced by N-methylnitrosourea (MNU) in female SD rats at 50d age

Phytoestrogen characteristics

- + Weak Estrogens
- + High affinity for βER
- Selective Estrogen Receptor Modulators (SERM)
 - + Agonist or antagonist effects
- + Biphasic effects (U- or Bell-shaped)
- High concentrations in plasma of animals fed diets containing moderate levels of soya
- Conjugated forms (Glucuronides/Sulphate) largely biologically inactive

Effects of isoflavones on cancer

- + Effects on cell signalling pathways
 - + Controls cell proliferation, apoptosis, angiogenesis
- Cell-cycle arrest (at G0/G1 and G2/M transition steps)
- + Topoisomerase inhibition
- Tyrosine protein kinase inhibition
- Inhibition of angiogenesis (blood supply)
- + Inhibition of metastasis
- + Suppression of inflammation
- Antioxidant effects
- Promotion of DNS demethylation
- Additional tumour-specific mechanisms
 - + Inhibition of androgen-dependent carcinogenesis (e.g. Prostate-specific androgen)
 - + Aromatase inhibition/upregulation
 - + Competition for estrogen receptor sites

Soy and isoflavones affect tumours that originate by various routes

+ Chemically-induced

+ Xenograft

- + Estrogen-sensitive
- + Estrogen-independent

+ Mutant Mice models

+ ApcMin mouse

+ Genetically-modified animal models

- + MMTV-neu/ErbB-2 transgenic mice
- + TRAMP mice (TRAnsgenic Mouse model for Prostate cancer)

+ Spontaneous

OECD guideline for the testing of chemicals: Carcinogenicity studies (2009)

 the content of dietary contaminants, including but not limited to pesticide residues, persistent organic pollutants, phytoestrogens, heavy metals and mycotoxins, that might influence the outcome of the test, should be as low as possible

Variation in isoflavone levels in laboratory animal diets

++++ ENVIGO Growth of MCF-7 cells in ovariectomized athymic mice fed various levels of genistein (15, 150, 300 ug/g), either as soy isolate or genistein

Effect of a dietary genistin-rich soy isoflavones mix and soya protein concentrate on MCF-7 tumour size in intact female scid mice predosed with estrogen and 8 weeks after injection of cells

Interaction of Tamoxifen and genistein on MCF-7 tumours in ovariectomised athymic nude mice

Modified from Du et al., 2012

Effect of soy and soy isoflavones on tumour proliferation, apoptosis and microvessel density in female scid mice injected with MCF-7 cells, and pre-dosed with estrogen

	Proliferation index	Apoptotic index	MVD
	(%)	(%)	(vessels/field)
Control	$72.2 \pm 4.3 48.7 \pm 2.9^4 46.3 \pm 3.8^4 47.1 \pm 2.4^4 45.3 \pm 0.8^4$	3.32 ± 0.78	6.00 ± 2.65
SPC (0.1%)		4.98 ± 0.33	4.49 ± 1.29
SPC (0.5%)		4.39 ± 0.51	3.73 ± 0.81
GSI (0.028%)		4.34 ± 0.66	2.43 ± 0.72
GSI (0.14%)		4.94 ± 0.51	4.45 ± 1.61

¹Values are means \pm SEM. Within the column, values with superscript are significantly different from the control value. MVD, microvessel density.-²p < 0.05.-³p < 0.01.-⁴p < 0.005.

> SPC – Soya Protein Concentrate GSI – Genistin-rich Soy Isoflavone Mix

> > After Zhou et al., 2004

Modified from Touny and Banerjee, 2007

Genistein inhibition of prostate cancer metastasis in male athymic Balb/c mice

Comparison of the steady state concentrations of unconjugated plasma isoflavones in adult Sprague-Dawley rats and in 3 different strains of mice that were fed commercial soycontaining diets

Adapted from Setchell et al., 2011

Summary: The ideal diet for oncology

- Nude immunocompromised mice have a greater requirement for energy to compensate for a higher heat loss, and this amounts to about 20-50% over typical ambient temperatures
- This can probably be met through normal regulation of energy balance and the control of food intake, providing that food is easily available and eatable
- It is unlikely that the amount of dietary protein within reasonable limits (10-25% w/w) has a significant effect on growth of the animal or of tumours

Summary: The ideal diet for oncology

- Optimal tumour growth is likely to take place with moderate levels of carbohydrate and unsaturated fats, especially if the fat contains a high proportion of omega-6 fatty acids and low levels of omega-3 fatty acids
- Ideally fishmeal and fish oils should be avoided because of the relatively high levels of omega-3 fatty acids and, although a low risk, potentially carcinogenic levels of nitrosamines, dioxins, and other persistent organic pollutants
- Soybean meal (and alfalfa) should be excluded from the diet, and in regulatory studies is an OECD objective

Feeding rodent models used in oncology studies

++++ Health monitoring and new oncology research models

Stephen Hillen, DVM Director, Veterinary Science, Europe

Importance of health monitoring programs

FELASA guidelines

- Agreement/consensus in between users and breeders in Europe
- List of micro-organisms that can (but do not have to) influence research results should be mentioned in published articles
- FELASA makes a distinction in between immunocompetent and immunodeficient animals
- FELASA recommends 10 animals per quarter in an 'open cage' environment
- This will only detect with a certainty close to 100% infections with a prevalence of more than 30%

FELASA health monitoring recommendations vs Envigo barrier reporting (serology)

		TEST	Mouse (EU)		Rat (EU)		Hamster (US)		Guinea pig (EU)		Rabbi	t (EU)
		METHOD (*)	A ⁽¹⁾	B ⁽²⁾	A ⁽¹⁾	B ⁽²⁾	A ⁽¹⁾	B ⁽²⁾	A ⁽¹⁾	B ⁽²⁾	A ⁽¹⁾	B ⁽²⁾
Ectromelia (mouse pox) virus		Bead	1	12								
Guinea Pig Adenovirus	GpAd	ELISA							4	12	-	
Guinea Pig Cytomegalovirus	GpCMV	IFA							1		-	
Guinea Pig Parainfluenzavirus	GpPI-3	ELISA							4			
Hantaan Virus (3)	HTN	Bead / ELISA		12	1	12						
Kilham Rat Virus	KRV	ELISA			4	12						
Lactic Dehydrogenase-Elevating												
Virus ⁽³⁾	LDEV	ELISA		1								
Lymphocytic Choriomeningitis Virus	LCM	Bead / ELISA	1	12		12	4	12		4		
Minute Virus of Mice	MVM	Bead	4	12								
Mouse Adenovirus type 1 (FL)	MAd	Bead / ELISA	1	12	1	12						
Mouse Adenovirus type 2 (K87)	MAd	Bead / ELISA	1	12	1	12						
Mouse Cytomegalovirus (3)	MCMV	Bead		12								
Mouse Hepatitis Virus	MHV	Bead	4	12								
Mouse K-virus (3)	К	ELISA		1								
Mouse Parvo Virus	MPV (NS-1)	Bead	4	12								
Mouse Polyoma virus (3,5)	POL	ELISA		1								
Mouse Rotavirus	EDIM	Bead	4	12								
Mouse Thymic Virus ⁽³⁾	MTV	IFA		1								
Murine Noro Virus	MNV	Bead	4	12								
Pneumonia Virus of Mice (5)	PVM	Bead / ELISA	1	12	4	12		12				
Rabbit Haemorrhagic Disease Virus	RHDV	ELISA									4	12
Rabbit Pox Virus (Myxomatosis) (6)	Мухо	ELISA										12
Rabbit Rotavirus	Rota	ELISA									4	12
Rat Minute Virus	RMV	ELISA			4	12						
Rat Parvo Virus	RPV	ELISA			4	12						
Rat Respiratory Virus (see												
Pneumocystis)	RRV	PCR			1	12		4				
Rat Theilovirus	RTV	ELISA			4	12						
Reovirus Type 3	Reo 3	Bead / ELISA	1	12	1	12		12				
Sendai	Sendai	Bead / ELISA	1	12	1	12	4	12	4	12		
Simian virus 5	Simian	ELISA						12				
Sialodacryoadenitis / (Rat												
Coronavirus)	SDA/(RCV)	ELISA			4	12						
Theiler's Murine Encephalomyelitis	TMEV (GD											
Virus	VII)	Bead	4	12								
Toolan H1	H1	ELISA			4	12						
Total tests			31	184	34	168	8	64	13	28	8	36

FELASA Health monitoring recommendations vs Envigo barrier reporting (bacteriology)

Destaria and funci	TEST	Mous	e (EU)	Rat	Rat (EU)		Hamster (US)		Guinea pig (EU)		it (EU)
Bacteria and fungi	METHOD	A ⁽¹⁾	B ⁽²⁾	A ⁽¹⁾	B ⁽²⁾	A ⁽¹⁾	B ⁽²⁾	A ⁽¹⁾	B ⁽²⁾	A ⁽¹⁾	B ⁽²⁾
Bordetella bronchiseptica (4)	Culture				12		4	4	12	4	12
CAR bacillus (3,5)	ELISA		1	1	12					1	
Campylobacter jejuni	PCR						4				
Citrobacter rodentium	Culture	1	12								
Citrobacter bovis (HAC)	PCR	Immun	e deficient	animals +	SOPF						
Chlamydia psittaci	IFA								12		
Clostridium piliforme	Bead / ELISA	1	12	4	12	1	12	1	4	4	12
Corynebacterium kutscheri (4)	Culture	1	12		12	1	4	4	12		
Dermatophytes (5,7)	Culture								12		12
Helicobacter spp. (all subspecies)	PCR	4	12	4	12	1	4				
Klebsiella pneumoniae (3,4)	Culture	Immun	e deficient	animals +	SOPF		4				
Klebsiella oxytoca (3,4)	Culture	Immune deficient animals + SOPF					4				
Lawsonia intracellularis (6)	PCR						4				
Mycoplasma pulmonis	Bead/ELISA/PCR	1	12	4	12		4				
Pasteurellaceae (3,4,5,6,7)	Culture										
Pasteurella spp.	Culture		12		12				12		12
Pasteurella multocida	Culture		12		12				12	4	12
Pasteurella pneumotropica	Culture	4	12	4	12	4	4		12		12
Pneumocystis spp (4)	PCR				12		4				
Pneumocystis carinii (RRV) / murina (3)	PCR	Imm.Def. + SOPF	1	1	12						
Pseudomonas aeruginosa (3,4,5)	Culture	Immune deficient animals + SOPF			SOPF		4				
Proteus spp.	Culture	Immun	e deficient	animals +	SOPF						
Salmonella spp.	Culture	1	12	1	12	1	12	1	12	1	12
Staphylococcus aureus (3,4,5,7)	Culture	Immun	e deficient	animals +	SOPF		4				
Streptobacillus moniliformis	Culture	1	12	1	12			1	12		
Streptococci Beta-haemolytic (not Group D)	Culture	4		4				4	12		
Streptococci Beta-haemolytic (A and/or G Group)	Culture		12		12						
Streptococci Beta-haemolytic (Group B)							4				L
Streptococcus pneumoniae	Culture	4	12	4	12		4	4	12		
Yersinia pseudotuberculosis (5)	Culture								12		
Treponema cuniculi (7)	IFA										12
Total tests		22	145	28	168	8	80				

FELASA Health monitoring recommendations vs Envigo barrier reporting (parasitology)

Parasitology	TEST	Mous	e (EU)	Rat (EU)		Hamster (US)		Guinea pig (EU)		Rabbit (EU)					
Parasitology	METHOD	A ⁽¹⁾	B ⁽²⁾	A ⁽¹⁾	B ⁽²⁾	A ⁽¹⁾	B ⁽²⁾	A ⁽¹⁾	B ⁽²⁾	A ⁽¹⁾	B ⁽²⁾				
Ectoparasites (5)	Micr.	4	12	4	12	4	12	4	12	4	12				
Endoparasites (6)	Micr.	4	12	4	12	4	12	4	12	4	12				
Encephalitozoon cuniculi (3,4)	ELISA		1				4	1	12	4	12				
Total tests		8	25	8	24	8	28	9	36	12	36				
(1,2) Frequency per year	$A^{(1)} = FELAS$	SA, B ⁽²	²⁾ = ENVIG	iO ⁽³⁾ = F	ELASA	Optional fo	or rats ⁽⁴⁾	= FELAS	A Optiona	Il for ham	sters				
(5) Ectoparasite screening includes:															
Glericola porcelli	Aspicularis tetraptera														
Myocoptes musculinus						Balantidur	n sp.								
Myobia musculi						Chilomast	ix sp.								
Octodectes cyanotis						Cryptospo	ridia								
Radfordia ensifera						Dentoston	nella trans	lucida							
Sarcoptes scabiei						Eimeria sp).								
						Entamoeb	e sp.								
						Giardia sp									
						Hymenole	pis nana								
						Spironucle	eus sp.								
	Syphacia muris														
						Syphacia	oblevata								
						Trichomor	nas sp.								
					Tritrichomonas sp.										

Health monitoring program: What are we looking for?

- + Serology serum (ELISA HI IFA MFI/Bead)/indirect
- + Bacteriology culture (direct)/serum/PCR
- + Parasitology micro/macroscopic/serum
- + Pathology micro/macroscopic

Health monitoring program

- Frequency and profile types
- + Age (sensitivity)
- + Strain (sensitivity)
- Test method (sensitivity)
- + A 'good' health monitoring program requests a statistically significant sample size and an adequate frequency
- Sample size (at NL 12 mice 10 rats per barrier/month + bedding Sentinels)
- + FELASA Recommendations (Nicklas *et al.*, 2002; Maehler *et al.*, 2014)
- + Additional organisms related to study type (on request)
- Build up historic data as prevalence differ

Sample size - Detection limits

Assumed Infection Rate (%)												
Sample size (N) ^b	1	2	3	4	5	10	15	20	25	30	40	50
5	0.05	0.10	0.14	0.18	0.23	0.41	0.56	0.67	0.76	0.83	0.92	0.97
10	0.10	0.18	0.26	0.34	0.40	0.65	0.80	0.89	0.94	0.97	0.99	
15	0.14	0.26	0.37	0.46	0.54	0.79	0.91	0.95	0.99			
20	0.18	0.33	0.46	0.56	0.64	0.88	0.95	0.99				
25	0.22	0.40	0.53	0.64	0.72	0.93	0.98					
30	0.25	0.45	0.60	0.71	0.79	0.96	0.99					
35	0.30	0.51	0.66	0.76	0.83	0.97						
40	0.33	0.55	0.70	0.80	0.87	0.99						
45	0.36	0.69	0.75	0.84	0.90	0.99						
50	0.39	0.64	0.78	0.87	0.92	0.99						
60	0.45	0.70	0.84	0.91	0.95							
70	0.51	0.76	0.88	0.94	0.97							
80	0.55	0.80	0.91	0.96	0.98							
90	0.60	0.84	0.94	0.97	0.99							
100	0.63	0.87	0.95	0.98	0.99							
120	0.70	0.91	0.97	0.99								
140	0.76	0.94	0.99									
160	0.80	0.96	0.99									
180	0.84	0.97										
200	0.87	0.98										

^a ILAR, 1976

$$b_{N} = \frac{\log (1 - \text{probability of detecting infection})}{\log (1 - \text{assumed infection rate})}$$

Dr. Colin White and Department of Epidemiology and Public Health at Yale University and the year 1976

Overview Envigo health monitoring profiles mice

Health Monitoring profiles for Envigo immunocompetent mouse stocks and strains bred in barriers. Category - FELASA M-I

M-II(J) M-IA **M SENTINEL FULL M NUDE** Ectromelia virus Ectromelia virus Ectromelia virus

Hantavirus Lymphocytic choriomeningitis virus Minute virus of mice Mouse adenovirus type 1 (Mad EL) Mouse adenovirus type 2 (Mad K87) Mouse cytomegalovirus Mouse hepatitis virus Mouse norovirus Mouse parvovirus Mouse rotavirus (EDIM) Pneumonia virus of mice Reovirus type 3 Sendai virus Theiler's murine encephalomyelitis virus

M-I

Citrobacter rodentium Clostridium piliforme Corynebacterium kutscheri

Helicobacter spp Corynebacterium bovis (HAC) Klebsiella oxytoca

Mycoplasma pulmonis Pasteurella spp.

Pneumocystis spp Proteus spp Pseudomonas aeruginosa

Salmonella spp

Streptobacillus moniliformis Streptococci Beta-haemolytic(group A and/orG) Streptococcus pneumoniae

Ectoparasites Endoparasites

Performed 11 times a year on barrier animals

Minute virus of mice Mouse adenovirus type 2 (Mad K87) Reovirus type 3

Citrobacter rodentium

Corynebacterium kutscheri Helicobacter spp Corynebacterium bovis (HAC)

Klebsiella oxytoca Klebsiella pneumonia Mycoplasma pulmonis

Pasteurella spp Pneumocystis spp Proteus spp Pseudomonas aeruginosa

Salmonella spp

Streptobacillus moniliformis Streptococci Beta-haemolytic(group A and/orG) Streptococcus pneumoniae

Ectoparasites Endoparasites

Performed 12 times a year on barrier iuvenile animals

Hantavirus Lactic Dehydrogenase-Elevating Virus Lymphocytic choriomeningitis virus Minute virus of mice Mouse adenovirus type 1 (Mad FL) Mouse adenovirus type 2 (Mad K87) Mouse cytomegalovirus Mouse hepatitis virus Mouse K virus Mouse norovirus Mouse parvovirus Mouse rotavirus (EDIM) Mouse thymic virus (MTV) Pneumonia virus of mice

Polyoma virus Reovirus type 3 Sendai virus Theiler's murine encephalomyelitis virus

CAR Bacillus Citrobacter rodentium

Clostridium piliforme Corynebacterium kutscheri Helicobacter spp. Mycoplasma pulmonis Pasteurella spp. Salmonella spp Streptobacillus moniliformis Streptococci Beta-haemolytic (group A and/or G) Streptococcus pneumoniae

Ectoparasites Encephalitozoon cuniculi Endoparasites

Performed once a year on barrier animals

Health Monitoring profiles for Envigo immunodeficient nude mouse stocks and strains bred in isolators. Category – FELASA MX

Ectromelia virus

Citrobacter rodentium

Corynebacterium kutscheri Helicobacter spp Corynebacterium bovis (HAC)

Klebsiella oxytoca Klebsiella pneumonia Mycoplasma pulmonis

Pasteurella spp. Pneumocystis spp

Proteus spp Pseudomonas aeruginosa Salmonella spp Staphylococcus aureus Streptobacillus moniliformis Streptococci Beta-haemolytic(group A and/orG)

Streptococcus pneumoniae

Ectoparasites Endoparasites

Performed 6 times a year on nude juveniles

Hantavirus Lymphocytic choriomeningitis virus Minute virus of mice Mouse adenovirus type 1 (Mad FL) Mouse adenovirus type 2 (Mad K87) Mouse cytomegalovirus Mouse hepatitis virus Mouse norovirus Mouse parvovirus Mouse rotavirus (EDIM) Pneumonia virus of mice Reovirus type 3 Sendai virus Theiler's murine encephalomyelitis virus

Citrobacter rodentium

Corynebacterium kutscheri

Clostridium piliforme

Klebsiella oxytoca

Pasteurella spp

Salmonella spp

Proteus spp

and/orG)

Ectoparasites

Endoparasites

haired animals

Klebsiella pneumonia

Mycoplasma pulmonis

Pseudomonas aeruginosa

Staphylococcus aureus

Streptobacillus moniliformis

Streptococcus pneumoniae

Performed 2 times a year on

Streptococci Beta-haemolytic (group A

Mouse rotavirus (EDIM) Pneumonia virus of mice Sendai virus

Theiler's murine encephalomyelitis virus

Clostridium piliforme Corynebacterium kutscheri

Helicobacter spp

Klebsiella oxytoca Klebsiella pneumonia Mycoplasma pulmonis

Proteus spp Pseudomonas aeruginosa Salmonella spp Staphylococcus aureus Streptobacillus moniliformis Streptococci Beta-haemolytic (group A and/orG) Streptococcus pneumoniae

Ectoparasites Endoparasites

Performed 3 times a year on haired animals

M SENTINEL SHORT

Minute virus of mice

Mouse hepatitis virus

Mouse parvovirus

Citrobacter rodentium

Pasteurella spp

Isolator report Immunodef. mice

+ Compared to barrier reared

- + Klebsiella (oxytoca/pneumonia)
- + Proteus spp
- + Pseudomonas aeruginosa
- + Staphylococcus aureus
- + Hyperkeratinosis Associated
- + Corynebacterium spp (HAC)

Facility	ls	olator		Species			
Envigo RMS S.r.I.	Isc	lator 26			Mouse		
Viruses	Test	Latest	Latest	Testing	Test	Historical	
	Frequency	Test Date	Results	Laboratory	Method	Results*	
Ectromelia virus	6 months	22.03.16	0/3	Italy	Bead	0/9	
Hantavirus	6 months	22.03.16	0/3	Italy	Bead	0/9	
Lactate dehydrogenase elevating virus	12 months	19.01.16	0/3	Italy	ELISA	0/6	
Lymphocytic choriomeningitis virus	6 months	22.03.16	0/3	Italy	Bead	0/9	
Minute virus of mice	2 months	17.05.16	0/3	Italy	Bead	0/30	
Mouse adenovirus type 1 (MAd FL)	6 months	22.03.16	0/3	Italy	Bead	0/9	
Mouse adenovirus type 2 (MAd K87)	6 months	22.03.16	0/3	Italy	Bead	0/9	
Mouse cytomegalovirus	6 months	22.03.16	0/3	Italy	Bead	0/9	
Mouse hepatitis virus	2 months	17.05.16	0/3	Italy	Bead	0/30	
Mouse K-virus	12 months	19.01.16	0/3	Italy	ELISA	0/6	
Mouse Norovirus	6 months	22.03.16	0/3	Italy	Bead	0/9	
Mouse parvovirus	2 months	17.05.16	0/3	Italy	Bead	0/30	
Mouse polyoma virus	12 months	19.01.16	0/3	Italy	ELISA	0/6	
Mouse rotavirus (EDIM)	2 months	17.05.16	0/3	Italy	Bead	0/30	
Mouse thymic virus	12 months	19.01.16	0/3	Italy	IFA	0/6	
Pneumonia virus of mice	2 months	17.05.16	0/3	Italy	Bead	0/30	
Reovirus type 3 (Reo 3)	6 months	22.03.16	0/3	Italy	Bead	0/9	
Sendai virus	2 months	17.05.16	0/3	Italy	Bead	0/30	
Theiler's murine encephalomyelitis virus	2 months	17.05.16	0/3	Italy	Bead	0/30	
Bacteria, Mycoplasma and Fungi							
CAR Bacillus	12 months	19.01.16	0/3	Italy	ELISA	0/6	
Citrobacter rodentium	2 months	17.05.16	0/6	Italy	Culture	0/60	
Clostridium piliforme	2 months	17.05.16	0/3	Italy	Bead	0/30	
Corynebacterium kutscheri	2 months	17.05.16	0/6	Italy	Culture	0/60	
Helicobacter spp	2 months	17.05.16	0/3	Italy	PCR	0/30	
Hyperkeratinosis Associated Corynebacterium spp	2 months	17.05.16	0/3	Italy	Culture/PCR	0/30	
Klebsiella oxytoca	2 months	17.05.16	0/6	Italy	Culture	0/60	
Klebsiella pneumoniae	2 months	17.05.16	0/6	Italy	Culture	0/60	
Mycoplasma pulmonis	2 months	17.05.16	0/3	Italy	Bead	0/30	
Pasteurella spp	2 months	17.05.16	0/6	Italy	Culture	0/60	
Pneumocystis spp	2 months	17.05.16	0/3	Italy	PCR	0/30	
Proteus sp	2 months	17.05.16	0/6	Italy	Culture	0/60	
Pseudomonas aeruginosa	2 months	17.05.16	0/6	Italy	Culture	0/60	
Salmonella spp	2 months	17.05.16	0/6	Italy	Culture	0/60	
Staphylococcus aureus	2 months	17.05.16	0/6	Italy	Culture	0/60	
Streptobacillus moniliformis	2 months	17.05.16	0/6	Italy	Culture	0/60	
Streptococci Beta-haemolytic (group A and/or G)	2 months	17.05.16	0/6	Italy	Culture	0/60	
Streptococcus pneumoniae	2 months	17.05.16	0/6	Italy	Culture	0/60	
Parasites							
Ectoparasites	2 months	17.05.16	0/6	Italy	Microscopy	0/60	
Encephalitozoon cuniculi	12 months	19.01.16	0/3	Italy	ELISA	0/6	
Endoparasites	2 months	17.05.16	0/6	Italy	Microscopy	0/60	
Pathological Lesions							
External	2 months	17.05.16	0/6	Italy	Pathology	0/60	
Necropsy	2 months	17.05.16	0/6	Italy	Pathology	0/60	

Health monitoring SCID mice

- + Meeting the FELASA 2014 recommendations
- + Screening frequency: every 2 months
- + Fixed number of mice
- + Fixed screening profiles
 - + Scid and sentinel full/short

In general immunodeficient mice must be negative for opportunistic bacteria, to include: *Klebsiella* spp., *Staphylococcus aureus, Pseudomonas aeruginosa* and *Proteus* spp.

Health monitoring complication - SCIDs

- + Problems with serology
- + Sentinel programme using Hsd:NIHBS
- + SCID isolators have sentinel animals in the same isolator So all data on the same report Mouse Strains Held In Isolator

Mutant Mice

C.B-17/IcrHan®Hsd-Prkdc^{scid}

Sentinel (Outbred) Mice

Hsd:NIHBS

Summary of Findings

No significant findings.

Serological testing for antibodies to pathogenic agents in *scid* mice is not appropriate because of a lack of a fully functioning immune system in these mice. Consequently, the serology results for the scid mice held in this Isolator are obtained using sentinel animals.

Report Reference: 15-2521, Report Printed: December 21, 2015, Isolator Populated: March 25, 2008 Data are expressed as number positive/number tested. *Cumulative data up to 18 months. All testing is performed by Envigo using standard operating procedures. Results are controlled through a secure LIMS and released on the approval of the Laboratory Services Manager. Envigo + Phone:+44 (0)1530 225107 + Fax:+44 (0)1530 222807 + rmstechnicalservices.eu@envigo.com + envigo.com

Health monitoring nude mice

- Meeting the FELASA 2014 Recommendations
- + Screening frequency: every 2 months
- + Fixed number of mice
- + Fixed screening profiles
 - + Nude and sentinel full/short
 - + In this case the sentinel is the haired heterozygous mouse

In general immunodeficient nude mice must be negative for opportunistic bacteria, to include: *Klebsiella* spp., *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Proteus* spp. and *Corynebacterium* bovis (HAC)

Isolator husbandry

- + Isolators and equipment sterilized at set-up
- 3 months consecutive health testing prior to release for sale
- + Sterilized equipment and irradiated consumables
- + Weekly cage change
- + Automatic water
 - + 0.2 micron filtered
 - + Chlorinated to 8-10 ppm
 - + Acidified to pH of 5.8-6.0
- Irradiated Teklad Diet and bedding (Global Diet 2918 or 2919)

Model selection considerations

What are researchers looking for in a model?

- + Will it **grow** a tumor?
- + What will take rate of tumor be?
- + Will the model become leaky?
- + Docile, easy to handle
- + Acceptable health status
- + Economical
- + Robust, vigorous
- + Availability

New oncology models

SHrNTM model: Background

- + S Hr N = "SCID" "Hairless" "NOD" mouse
- + Developed by Harlan (renamed Envigo)
- Created by backcrossing the hairless (Hrhr) mutation on to a NOD.SCID mouse
- + Hair loss commences at approximately 10 days of age
 - + Complete hair loss by 5-6 weeks of age
- + Nomenclature
 - + NOD.Cg-Prkdcscid Hrhr/NCrHsd

SHrNTM model: Characteristics

+ SHrNTM ("Shorn") Hairless NOD.SCID mouse

- + Triple-immunodeficient model with distinct benefits, well-suited for tumor xenografts
 - + Deficient in T and B cells
 - + NK cell functional deficit
 - + No circulating complement
 - + Decreased macrophage function
 - + Decreased granulocyte function
 - + Decreased dendritic cells

www.envigo.com/shrn

SHrN[™] model: Benefits

+ Severely Immunocompromised

- + More immunocompromised than other hairless SCID models
- + Preliminary phenotyping results show promising advantages in cell uptake and tumor growth
- + Decreased leakiness compared to other SCID models
- + Enhanced acceptance and growth of cells for humanization

+ Inbred

+ Less variability in research

+ Hairless

- + Eliminates need to shave model, saving time and labor
- + Improved tumor imaging clarity and observation of tumor growth

Flow cytometry: Summary data

Models (Females) 6-7 Weeks Old	Average Percentages								
Model Name	% B Cells	% NK Cells	% Dendritic Cells	% NKT Cells	% T Helper	% T Cells	% Granulocytes	% Macrophages	% Delta Gamma T
NOD SCID (n=5)	0.29	16.35	2.56	0.14	0.01	0.04	15.09	9.80	0.23
SCID Beige (n=10)	0.29	6.46	0.81	0.01	0.07	0.01	10.35	12.36	0.01
SHrN Female (n=10)	0.32	10.14	1.25	0.19	0.03	0.02	25.19	9.12	0.53
NOG Female (n=6)	0.04	0.02	3.40	0.07	0.00	0.01	8.58	4.43	0.02

Key Point: NK Cells & Dendritic Cells are the main differences between the SHrN & NOG*

*Flow cytometry experiment conducted by UMass

SHrN[™] model: Cell line references

- Our scientists summarized the publication data on the SHrN into a simple chart
- Research details can be located on our cell line chart tool or the SHrN model web page

Referenced Envigo model

Human Tissue	Cell Lines*	Mice
Breast	MCE-7 ³⁵⁴	SHrN TM
Dicast		
	MDA-MB-231	SHrin
Lung	NCI-H69 ³⁵⁴	SHrN [™]
	NCI-H841 354	SHrN [™]
	(HPV16)BC-1-	
Skin	Ep/SL-LF 314	SHrN [™]

*Visit <u>www.envigo.com/onco</u> for links to publications

Peer-reviewed publications show proven performance in multiple lung and breast cancer cell lines

R2G2 (Rag2 DKO) model: Background

- + R2G2 = "Rag2" "IL2RG" double knockout mouse
- + Model licensed from an institution in the United States
- Created by backcrossing the IL2RG (common gamma chain) mutation on to a Rag2 mouse
- + Background is a mixture of C57 and 129
- + Nomenclature:
 - + B6;129-Rag2^{tm1Fwa}II2rg^{tm1Rsky}/DwIHsd

R2G2 (Rag2 DKO) model: Characteristics

+ Ultra (triple) immunodeficient mouse model

- + Deficient in T and B cells
- + Deficient in NK cells
- + No circulating complement
- + Decreased macrophage function

Reduced leakiness

+ Reduced leakiness as compared to other SCID mice (varies with background)

+ Less radiosensitivity

+ Less sensitive to radiation as compared to SCID mice (including NOG/NSG)

+ Flow cytometry data

- + Overall results similar to NOG mouse*
- + NK cell counts at level similar

*Must repeat flow cytometry data with larger sample sizes

Health monitoring and new oncology research models

Come and visit us at our booth F001/003 and E002/004